Small s often embody more innovation than larger more ly or high profile ones.

Innovation is a wide concept that includes improvets in processes, products and services. It involves incorporating new ideas which generate changes that help solve the needs of a company and so increase its competitiveness. That’s hardly big news. But what may be surprising to some is that innovation has itself, well, innovated and it isn’t what it used to be.

New materials and energy, design approaches, as well as advances in digital and big data, are creating a wave of innovation within the construction industry. These new ideas are increasingly often tested and proven on smaller and agiler s. Investing time and money is well spent on  these  ideas and technical improvets can then be used on large-scale developts.

Here are  three exciting small s:

Vanke Pavilion - Milan Expo 2015 / Daniel Libeskind
Vanke Pavilion – Milan Expo 2015 / Daniel Libeskind
Vanke Pavilion - Milan Expo 2015 / Daniel Libeskind
Vanke Pavilion – Milan Expo 2015 / Daniel Libeskind
VANKE PAVILION Milan, Italy
VANKE PAVILION
Milan, Italy

1. Vanke Pavilion — Milan Expo 2015

The  corporate pavilion for Vanke explores key issues related to the theme of the Expo Milano 2015, “Feeding the Planet, Energy for ”.

Situated on the southeast edge of the Lake Arena, the 800-square meter pavilion appears to rise from the east, forming a dynamic, vertical landscape.

The original tiling pattern would have resulted in thousands of ceramic tiles of different sizes and shapes. The resulting complexity and lack of repetition could have led to high s and a longer erection time.

Working with Architects Studio Libeskind, Format Engineers  (Engineering Designers with backgrounds in structural engineering, coding, mathematics, and architecture) changed the pattern from thousands of different tiles to less than a dozen and  simplified the  backing structure generating  huge savings. Format also proposed ‘slicing’ of the building and then fabrication of  the primary structure of steel ribs using  low tech flat steel plate elets.  These were then used in a series of long span portalised frames reminiscent of the ribs and spars in traditional boat building  resulting in a  column-free area for the display of Chinese Cultural Heritage.

The frame was built to a budget and without difficulty ahead of the neighboring Expo buildings.

Building Size
12 meters high

130 mq roof terrace

Architect:  Studio Libeskind

Engineer:  Format

Oxford Brookes Rain Pavilion
Oxford Brookes Pavilion
Oxford Brookes Rain Pavilion
Oxford Brookes Pavilion
Oxford Brookes Rain Pavilion
Oxford Brookes Pavilion

2.  Oxford Brookes Pavilion

The Rain Pavilion is an urban forest sculpture forming the front entrance to Oxford Brookes University’s Architecture Faculty.

Pavilion artwork is a sensory experience for the community.”

The complex form required extensive wind modeling and comprehensive structural analysis within a generative 3d model. This was allied with Format Engineers in-house code for the self-organization of voids and their subsequent redistribution.

.At each stage of the design process different modeling and analysis techniques were used to exploit the form and to optimise the structure. The considerable challenges posed by the slenderness of the structure and its dynamic behavior under wind were resolved by combining Computational Fluid Dynamics (CFD)  (a branch of  fluid mechanics  that uses numerical analysis and algorithms to solve and analyze problems that involve  fluid  flows) with a generative design environt. Conceptual design introduced the ideas of tubular s and folded steel canopies, both of which were  perforated by circular holes arranged to allow the interplay of light and water through the structure. The voids were generated using a self-organizing process.

Grasshopper  (a graphical algorithm computer 3-D modeling tool)  was used  to produce a mesh that could include the voids in both the s and the petals.

The Pavilion is designed to celebrate the sound of , and the noise of water interacting with different sections of the installation is part of the experience of passing through it. The structure has a design of five years and can  be transported to other locations.

Architect:  Oxford Brookes University, Oxford, UK

Engineer:  Format

KREOD Pavilion
KREOD Pavilion
KREOD Pavilion
KREOD Pavilion
KREOD Pavilion
KREOD Pavilion

3.  KREOD Pavilion

The KREOD pavilions were first erected on the London Greenwich Olympic site in 2012.  Easily rearranged, three pod-like pavilions were formed with a wooden structural framework comprised of an open hexagonal composition.

Standing three meters tall, each double-curved wooden shell enclosed a footprint of 20 square meters,  totaling 60 square meters. A  waterproof tensile membrane sealed the interior from the elets fully portable with demountable joints,  the individual components can be  stacked for efficient transportation.

Chun Qing Li the architect required a temporary exhibition or function space that could be erected and demounted mostly by hand and by unted staff. The quality of finish needed to  echo that of handmade furniture and had to be low and quick to erect. The continuously changing double curved form of the enclosure meant that in theory, every nodal connection was  different. A conventional bolted would have hundreds of pounds per fixing. Format  suggestion of a ‘reciprocal’ jointed timber grid shell required standard  bolts which equated to a fraction of the normal . It also allowed the structure to be built from simple and light flat timber elets.

The structure used Kebony timber throughout, a sustainable alternative to tropical hardwood. As this material had not previously been used in a structural context Format undertook load testing of the material and the connections at the University of Cambridge. The timber was fabricated using CNC routing (a computer controlled cutting machine)  allowing a highly accurate fit between members and basic  erection on site.

Architect:  Chun Qing Li  

Engineer:  Format

 

Related Posts

Privacy Preference Center